123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261 |
- ######################## BEGIN LICENSE BLOCK ########################
- # The Original Code is Mozilla Communicator client code.
- #
- # The Initial Developer of the Original Code is
- # Netscape Communications Corporation.
- # Portions created by the Initial Developer are Copyright (C) 1998
- # the Initial Developer. All Rights Reserved.
- #
- # Contributor(s):
- # Mark Pilgrim - port to Python
- #
- # This library is free software; you can redistribute it and/or
- # modify it under the terms of the GNU Lesser General Public
- # License as published by the Free Software Foundation; either
- # version 2.1 of the License, or (at your option) any later version.
- #
- # This library is distributed in the hope that it will be useful,
- # but WITHOUT ANY WARRANTY; without even the implied warranty of
- # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- # Lesser General Public License for more details.
- #
- # You should have received a copy of the GNU Lesser General Public
- # License along with this library; if not, write to the Free Software
- # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
- # 02110-1301 USA
- ######################### END LICENSE BLOCK #########################
- from typing import Tuple, Union
- from .big5freq import (
- BIG5_CHAR_TO_FREQ_ORDER,
- BIG5_TABLE_SIZE,
- BIG5_TYPICAL_DISTRIBUTION_RATIO,
- )
- from .euckrfreq import (
- EUCKR_CHAR_TO_FREQ_ORDER,
- EUCKR_TABLE_SIZE,
- EUCKR_TYPICAL_DISTRIBUTION_RATIO,
- )
- from .euctwfreq import (
- EUCTW_CHAR_TO_FREQ_ORDER,
- EUCTW_TABLE_SIZE,
- EUCTW_TYPICAL_DISTRIBUTION_RATIO,
- )
- from .gb2312freq import (
- GB2312_CHAR_TO_FREQ_ORDER,
- GB2312_TABLE_SIZE,
- GB2312_TYPICAL_DISTRIBUTION_RATIO,
- )
- from .jisfreq import (
- JIS_CHAR_TO_FREQ_ORDER,
- JIS_TABLE_SIZE,
- JIS_TYPICAL_DISTRIBUTION_RATIO,
- )
- from .johabfreq import JOHAB_TO_EUCKR_ORDER_TABLE
- class CharDistributionAnalysis:
- ENOUGH_DATA_THRESHOLD = 1024
- SURE_YES = 0.99
- SURE_NO = 0.01
- MINIMUM_DATA_THRESHOLD = 3
- def __init__(self) -> None:
- # Mapping table to get frequency order from char order (get from
- # GetOrder())
- self._char_to_freq_order: Tuple[int, ...] = tuple()
- self._table_size = 0 # Size of above table
- # This is a constant value which varies from language to language,
- # used in calculating confidence. See
- # http://www.mozilla.org/projects/intl/UniversalCharsetDetection.html
- # for further detail.
- self.typical_distribution_ratio = 0.0
- self._done = False
- self._total_chars = 0
- self._freq_chars = 0
- self.reset()
- def reset(self) -> None:
- """reset analyser, clear any state"""
- # If this flag is set to True, detection is done and conclusion has
- # been made
- self._done = False
- self._total_chars = 0 # Total characters encountered
- # The number of characters whose frequency order is less than 512
- self._freq_chars = 0
- def feed(self, char: Union[bytes, bytearray], char_len: int) -> None:
- """feed a character with known length"""
- if char_len == 2:
- # we only care about 2-bytes character in our distribution analysis
- order = self.get_order(char)
- else:
- order = -1
- if order >= 0:
- self._total_chars += 1
- # order is valid
- if order < self._table_size:
- if 512 > self._char_to_freq_order[order]:
- self._freq_chars += 1
- def get_confidence(self) -> float:
- """return confidence based on existing data"""
- # if we didn't receive any character in our consideration range,
- # return negative answer
- if self._total_chars <= 0 or self._freq_chars <= self.MINIMUM_DATA_THRESHOLD:
- return self.SURE_NO
- if self._total_chars != self._freq_chars:
- r = self._freq_chars / (
- (self._total_chars - self._freq_chars) * self.typical_distribution_ratio
- )
- if r < self.SURE_YES:
- return r
- # normalize confidence (we don't want to be 100% sure)
- return self.SURE_YES
- def got_enough_data(self) -> bool:
- # It is not necessary to receive all data to draw conclusion.
- # For charset detection, certain amount of data is enough
- return self._total_chars > self.ENOUGH_DATA_THRESHOLD
- def get_order(self, _: Union[bytes, bytearray]) -> int:
- # We do not handle characters based on the original encoding string,
- # but convert this encoding string to a number, here called order.
- # This allows multiple encodings of a language to share one frequency
- # table.
- return -1
- class EUCTWDistributionAnalysis(CharDistributionAnalysis):
- def __init__(self) -> None:
- super().__init__()
- self._char_to_freq_order = EUCTW_CHAR_TO_FREQ_ORDER
- self._table_size = EUCTW_TABLE_SIZE
- self.typical_distribution_ratio = EUCTW_TYPICAL_DISTRIBUTION_RATIO
- def get_order(self, byte_str: Union[bytes, bytearray]) -> int:
- # for euc-TW encoding, we are interested
- # first byte range: 0xc4 -- 0xfe
- # second byte range: 0xa1 -- 0xfe
- # no validation needed here. State machine has done that
- first_char = byte_str[0]
- if first_char >= 0xC4:
- return 94 * (first_char - 0xC4) + byte_str[1] - 0xA1
- return -1
- class EUCKRDistributionAnalysis(CharDistributionAnalysis):
- def __init__(self) -> None:
- super().__init__()
- self._char_to_freq_order = EUCKR_CHAR_TO_FREQ_ORDER
- self._table_size = EUCKR_TABLE_SIZE
- self.typical_distribution_ratio = EUCKR_TYPICAL_DISTRIBUTION_RATIO
- def get_order(self, byte_str: Union[bytes, bytearray]) -> int:
- # for euc-KR encoding, we are interested
- # first byte range: 0xb0 -- 0xfe
- # second byte range: 0xa1 -- 0xfe
- # no validation needed here. State machine has done that
- first_char = byte_str[0]
- if first_char >= 0xB0:
- return 94 * (first_char - 0xB0) + byte_str[1] - 0xA1
- return -1
- class JOHABDistributionAnalysis(CharDistributionAnalysis):
- def __init__(self) -> None:
- super().__init__()
- self._char_to_freq_order = EUCKR_CHAR_TO_FREQ_ORDER
- self._table_size = EUCKR_TABLE_SIZE
- self.typical_distribution_ratio = EUCKR_TYPICAL_DISTRIBUTION_RATIO
- def get_order(self, byte_str: Union[bytes, bytearray]) -> int:
- first_char = byte_str[0]
- if 0x88 <= first_char < 0xD4:
- code = first_char * 256 + byte_str[1]
- return JOHAB_TO_EUCKR_ORDER_TABLE.get(code, -1)
- return -1
- class GB2312DistributionAnalysis(CharDistributionAnalysis):
- def __init__(self) -> None:
- super().__init__()
- self._char_to_freq_order = GB2312_CHAR_TO_FREQ_ORDER
- self._table_size = GB2312_TABLE_SIZE
- self.typical_distribution_ratio = GB2312_TYPICAL_DISTRIBUTION_RATIO
- def get_order(self, byte_str: Union[bytes, bytearray]) -> int:
- # for GB2312 encoding, we are interested
- # first byte range: 0xb0 -- 0xfe
- # second byte range: 0xa1 -- 0xfe
- # no validation needed here. State machine has done that
- first_char, second_char = byte_str[0], byte_str[1]
- if (first_char >= 0xB0) and (second_char >= 0xA1):
- return 94 * (first_char - 0xB0) + second_char - 0xA1
- return -1
- class Big5DistributionAnalysis(CharDistributionAnalysis):
- def __init__(self) -> None:
- super().__init__()
- self._char_to_freq_order = BIG5_CHAR_TO_FREQ_ORDER
- self._table_size = BIG5_TABLE_SIZE
- self.typical_distribution_ratio = BIG5_TYPICAL_DISTRIBUTION_RATIO
- def get_order(self, byte_str: Union[bytes, bytearray]) -> int:
- # for big5 encoding, we are interested
- # first byte range: 0xa4 -- 0xfe
- # second byte range: 0x40 -- 0x7e , 0xa1 -- 0xfe
- # no validation needed here. State machine has done that
- first_char, second_char = byte_str[0], byte_str[1]
- if first_char >= 0xA4:
- if second_char >= 0xA1:
- return 157 * (first_char - 0xA4) + second_char - 0xA1 + 63
- return 157 * (first_char - 0xA4) + second_char - 0x40
- return -1
- class SJISDistributionAnalysis(CharDistributionAnalysis):
- def __init__(self) -> None:
- super().__init__()
- self._char_to_freq_order = JIS_CHAR_TO_FREQ_ORDER
- self._table_size = JIS_TABLE_SIZE
- self.typical_distribution_ratio = JIS_TYPICAL_DISTRIBUTION_RATIO
- def get_order(self, byte_str: Union[bytes, bytearray]) -> int:
- # for sjis encoding, we are interested
- # first byte range: 0x81 -- 0x9f , 0xe0 -- 0xfe
- # second byte range: 0x40 -- 0x7e, 0x81 -- oxfe
- # no validation needed here. State machine has done that
- first_char, second_char = byte_str[0], byte_str[1]
- if 0x81 <= first_char <= 0x9F:
- order = 188 * (first_char - 0x81)
- elif 0xE0 <= first_char <= 0xEF:
- order = 188 * (first_char - 0xE0 + 31)
- else:
- return -1
- order = order + second_char - 0x40
- if second_char > 0x7F:
- order = -1
- return order
- class EUCJPDistributionAnalysis(CharDistributionAnalysis):
- def __init__(self) -> None:
- super().__init__()
- self._char_to_freq_order = JIS_CHAR_TO_FREQ_ORDER
- self._table_size = JIS_TABLE_SIZE
- self.typical_distribution_ratio = JIS_TYPICAL_DISTRIBUTION_RATIO
- def get_order(self, byte_str: Union[bytes, bytearray]) -> int:
- # for euc-JP encoding, we are interested
- # first byte range: 0xa0 -- 0xfe
- # second byte range: 0xa1 -- 0xfe
- # no validation needed here. State machine has done that
- char = byte_str[0]
- if char >= 0xA0:
- return 94 * (char - 0xA1) + byte_str[1] - 0xA1
- return -1
|