123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160 |
- import sys
- from fractions import Fraction
- from math import ceil
- from typing import cast, List, Optional, Sequence
- if sys.version_info >= (3, 8):
- from typing import Protocol
- else:
- from pip._vendor.typing_extensions import Protocol # pragma: no cover
- class Edge(Protocol):
- """Any object that defines an edge (such as Layout)."""
- size: Optional[int] = None
- ratio: int = 1
- minimum_size: int = 1
- def ratio_resolve(total: int, edges: Sequence[Edge]) -> List[int]:
- """Divide total space to satisfy size, ratio, and minimum_size, constraints.
- The returned list of integers should add up to total in most cases, unless it is
- impossible to satisfy all the constraints. For instance, if there are two edges
- with a minimum size of 20 each and `total` is 30 then the returned list will be
- greater than total. In practice, this would mean that a Layout object would
- clip the rows that would overflow the screen height.
- Args:
- total (int): Total number of characters.
- edges (List[Edge]): Edges within total space.
- Returns:
- List[int]: Number of characters for each edge.
- """
- # Size of edge or None for yet to be determined
- sizes = [(edge.size or None) for edge in edges]
- _Fraction = Fraction
- # While any edges haven't been calculated
- while None in sizes:
- # Get flexible edges and index to map these back on to sizes list
- flexible_edges = [
- (index, edge)
- for index, (size, edge) in enumerate(zip(sizes, edges))
- if size is None
- ]
- # Remaining space in total
- remaining = total - sum(size or 0 for size in sizes)
- if remaining <= 0:
- # No room for flexible edges
- return [
- ((edge.minimum_size or 1) if size is None else size)
- for size, edge in zip(sizes, edges)
- ]
- # Calculate number of characters in a ratio portion
- portion = _Fraction(
- remaining, sum((edge.ratio or 1) for _, edge in flexible_edges)
- )
- # If any edges will be less than their minimum, replace size with the minimum
- for index, edge in flexible_edges:
- if portion * edge.ratio <= edge.minimum_size:
- sizes[index] = edge.minimum_size
- # New fixed size will invalidate calculations, so we need to repeat the process
- break
- else:
- # Distribute flexible space and compensate for rounding error
- # Since edge sizes can only be integers we need to add the remainder
- # to the following line
- remainder = _Fraction(0)
- for index, edge in flexible_edges:
- size, remainder = divmod(portion * edge.ratio + remainder, 1)
- sizes[index] = size
- break
- # Sizes now contains integers only
- return cast(List[int], sizes)
- def ratio_reduce(
- total: int, ratios: List[int], maximums: List[int], values: List[int]
- ) -> List[int]:
- """Divide an integer total in to parts based on ratios.
- Args:
- total (int): The total to divide.
- ratios (List[int]): A list of integer ratios.
- maximums (List[int]): List of maximums values for each slot.
- values (List[int]): List of values
- Returns:
- List[int]: A list of integers guaranteed to sum to total.
- """
- ratios = [ratio if _max else 0 for ratio, _max in zip(ratios, maximums)]
- total_ratio = sum(ratios)
- if not total_ratio:
- return values[:]
- total_remaining = total
- result: List[int] = []
- append = result.append
- for ratio, maximum, value in zip(ratios, maximums, values):
- if ratio and total_ratio > 0:
- distributed = min(maximum, round(ratio * total_remaining / total_ratio))
- append(value - distributed)
- total_remaining -= distributed
- total_ratio -= ratio
- else:
- append(value)
- return result
- def ratio_distribute(
- total: int, ratios: List[int], minimums: Optional[List[int]] = None
- ) -> List[int]:
- """Distribute an integer total in to parts based on ratios.
- Args:
- total (int): The total to divide.
- ratios (List[int]): A list of integer ratios.
- minimums (List[int]): List of minimum values for each slot.
- Returns:
- List[int]: A list of integers guaranteed to sum to total.
- """
- if minimums:
- ratios = [ratio if _min else 0 for ratio, _min in zip(ratios, minimums)]
- total_ratio = sum(ratios)
- assert total_ratio > 0, "Sum of ratios must be > 0"
- total_remaining = total
- distributed_total: List[int] = []
- append = distributed_total.append
- if minimums is None:
- _minimums = [0] * len(ratios)
- else:
- _minimums = minimums
- for ratio, minimum in zip(ratios, _minimums):
- if total_ratio > 0:
- distributed = max(minimum, ceil(ratio * total_remaining / total_ratio))
- else:
- distributed = total_remaining
- append(distributed)
- total_ratio -= ratio
- total_remaining -= distributed
- return distributed_total
- if __name__ == "__main__":
- from dataclasses import dataclass
- @dataclass
- class E:
- size: Optional[int] = None
- ratio: int = 1
- minimum_size: int = 1
- resolved = ratio_resolve(110, [E(None, 1, 1), E(None, 1, 1), E(None, 1, 1)])
- print(sum(resolved))
|